MRS 1996 FALL MEETING

Symposium II SCIENTIFIC BASIS FOR NUCLEAR WASTE MANAGEMENT XX

COMPARISON OF THE DISSOLUTION RATES OF URANIUM OXIDES IN AQUEOUS SOLUTIONS

The purpose of our work has been to measure the intrinsic dissolution rates of uranium oxides under a variety of well-controlled conditions that are relevant to a geologic repository and allow for modeling. The intermediate oxide phase, U₃O₈, is quite stable and known to be present in oxidized spent fuel. Dehydrated schoepite, UO₃·H₂O, has been shown to exist in drip tests on spent fuel.

Statistical experimental design was used to plan a set of 25 U₃O₈ and UO₃·H₂O dissolution experiments under similar conditions. These experiments allow us to examine systematically the effects of temperature (25-75°C), pH (8-10) and carbonate (2-200x10⁻⁴ molar) concentrations on dissolution of these oxides at 8 ppm dissolved oxygen in the leaching solutions, equivalent to atmospheric conditions.

Results indicate that UO₃·H₂O has a much higher dissolution rate than U₃O₈. Dissolution of of both oxides show a high sensitivity to carbonate concentration and temperature. The activation energy for U₃O₈ dissolution was calculated as 6.1 kcal/mol by regression analysis of the data, using the classical chemical rate equation. This is equivalent to the previously reported activation energy for UO₂ at atmospheric conditions, within the error bounds of the measurements.

Work performed under the auspices of the Yucca Mountain Site Characterization Project (YMP) and a USDOE/AECL (Canada) International Agreement as part of the Civilian Radioactive Waste Management Program by Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

Presenting and Contact Author: Steven A. Steward Lawrence Livermore Natl Lab

P.O. Box 808, L-325 Livermore, CA 94550 (510) 423-1767

FAX: (510) 423-4897

Steve Steward@guickmail.llnl.gov

Co-Author: Eleno T. Mones

> Lawrence Livermore Natl Lab P.O. Box 808, L-322 Livermore, CA 94550

(510) 422-7076